Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

catena-Poly[[silver(I)- μ-hexane-1,6-di-amine- $\left.\kappa^{2} N: N^{\prime}\right]$ cinnamate dihydrate]

Zhong-Lu You, ${ }^{\text {a,b }}$ Hai-Liang Zhu ${ }^{\text {a,b }} *$ and Wei-Sheng Liu ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, Fuyang Normal College, Fuyang Anhui 236041, People's Republic of China, and ${ }^{\text {b }}$ Department of Chemistry, Lanzhou University, Lanzhou
730000, People's Republic of China
Correspondence e-mail: hailiang_zhu@163.com

Received 26 March 2004

Accepted 31 March 2004
Online 11 May 2004
The title compound, $\left\{\left[\mathrm{Ag}\left(\mathrm{C}_{6} \mathrm{H}_{16} \mathrm{~N}_{2}\right)\right]\left(\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{O}_{2}\right) \cdot 2 \mathrm{H}_{2} \mathrm{O}\right\}_{n}$, has been synthesized and characterized by elemental analysis and single-crystal X-ray diffraction. The Ag atom is coordinated in a linear configuration by two N atoms from two hexane-1,6-diamine ligands, giving a zigzag polymeric chain with an $[-\mathrm{Ag}-\mathrm{N}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{N}-]_{n}$ backbone running parallel to the c axis. In the crystal packing, adjacent chains interact with the anions via the lattice water molecules, thus forming layers parallel to the $b c$ plane.

Comment

The structural characterization of silver(I) complexes with carboxylate anions as counter-ions or ligands has attracted much interest over the past 30 years because of the use of these compounds in a wide range of fields (Graham et al., 1996; Pingrong et al., 1998; Nomiya et al., 2000; Kristiansson, 2001). Recently, we have reported a few dozen silver(I)-carboxylate complexes with various amines and imines, all of which have been structurally characterized (Zhu et al., 1999, 2000; Zheng, Tong, Zhu \& Chen, 2001; Zheng, Tong, Zhu, Fang \& Chen, 2001; Usman et al., 2003; Zhu, Usman et al., 2003; Zhu, Zhang et al., 2003; You et al., 2004). As an extension of our work on the structural characterization of these silver(I) carboxylates, the title complex, (I), is reported here.

(I)

Complex (I) is a polymeric (1,6-diaminohexane)silver(I) complex. Each of the smallest repeat units in the complex contains a (1,6-diaminohexane)silver(I) cation, a cinnamate anion and two lattice water molecules, as shown in Fig. 1. In the cation, the Ag atom has a linear coordination environment and is coordinated by two N atoms from two 1,6-diaminohexane ligands. The $\mathrm{Ag} 1-\mathrm{N} 1$ and $\mathrm{Ag} 1-\mathrm{N} 2$ bond lengths
[2.133 (4) and 2.155 (4) A , respectively] are slightly longer than the mean $\mathrm{Ag}-\mathrm{N}$ bond lengths [2.126 (4) A$]$ reported for a similar silver complex with 1,6-diaminohexane (Zhu, Wang et al., 2003). The N1-Ag1-N2 angle [174.47 (15) ${ }^{\circ}$], indicating a slightly distorted linear geometry for atom Ag 1 , is comparable to the value observed in another similar silver complex [172.37 (8) ${ }^{\circ}$; Zhu, Liu et al., 2003]. In the anion, the

Figure 1
Part of the extended structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) $x-\frac{1}{2}, \frac{1}{2}-y, z-\frac{1}{2}$; (ii) $\frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}+z$.]

Figure 2
The crystal packing of (I), viewed along the a axis. Ag , water O and N atoms are represented by large cross-hatched, medium hatched and medium unfilled spheres, respectively.
dihedral angle between the plane of the benzene ring and the plane of the carboxy group $(\mathrm{O} 1 / \mathrm{C} 7 / \mathrm{O} 2)$ is $25.1(4)^{\circ}$. The $\mathrm{O} 2-$ $\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$ and $\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$ torsion angles are -168.9 (4) and $176.8(4)^{\circ}$, respectively. Atom C9 lies in the plane of the phenyl ring. The aminohexane chain is almost planar, the largest displacement from the least-squares plane being only 0.17 A. This plane makes a dihedral angle of $4.2(2)^{\circ}$ with the plane of the phenyl ring.

In the crystal, the cinnamate anions are located among the chains. The $\mathrm{Ag}-\mathrm{N}$ bonds link the amine molecules and the Ag atoms into a zigzag chain along the c axis. Adjacent chains interact with the anions via the lattice water molecules, thus forming layers along the $b c$ direction (Fig. 2). These layers are linked together by the hydrogen bonds listed in Table 1, thus forming a three-dimensional structure.

Experimental

All reagents and solvents were used as obtained without further purification. Silver cinnamate ($1 \mathrm{mmol}, 255 \mathrm{mg}$) and 1,6 -diaminohexane ($1 \mathrm{mmol}, 116 \mathrm{mg}$) were dissolved in an ammonia solution ($10 \mathrm{ml}, 30 \%$), and the mixture was stirred for about 20 min at room temperature. The resulting clear colorless solution was kept in air and, after slow evaporation of the solvent over a period of a week, large colorless crystals of (I) formed at the bottom of the vessel. The crystals were isolated, washed three times with water and dried in a vacuum desiccator using anhydrous CaCl_{2} (yield 78.7\%). Analysis found: C 44.19, H 6.72, N 6.82%; calculated for $\mathrm{C}_{15} \mathrm{H}_{27} \mathrm{AgN}_{2} \mathrm{O}_{4}$: C 44.24, H 6.68, N 6.88\%.

Crystal data

$\left[\mathrm{Ag}\left(\mathrm{C}_{6} \mathrm{H}_{16} \mathrm{~N}_{2}\right)\right]\left(\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{O}_{2}\right) \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=407.26$
Monoclinic, $P 2_{1} / n$
$a=7.272$ (1) \AA
$b=23.070$ (5) A
$c=10.753$ (2) \AA
$\beta=106.82(3)^{\circ}$
$V=1726.8(5) \AA^{3}$
$Z=4$
$D_{x}=1.567 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 7511
\quad reflections
$\theta=2.8-25.5^{\circ}$
$\mu=1.19 \mathrm{~mm}^{-1}$
$T=293(2) \mathrm{K}$
Block, colorless
$0.45 \times 0.32 \times 0.19 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.641, T_{\text {max }}=0.798$
7641 measured reflections
3381 independent reflections 2800 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.035$
$\theta_{\text {max }}=26.0^{\circ}$
$h=-6 \rightarrow 8$
$k=-28 \rightarrow 26$
$l=-13 \rightarrow 13$

Refinement

Refinement on F^{2}

> H-atom parameters constrained
> $w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0361 P)^{2}\right]$
> where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }<0.001$
> $\Delta \rho_{\max }=0.70 \mathrm{e}^{-3}$
> $\Delta \rho_{\min }=-0.57 \mathrm{e}^{-3}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.049$
$w R\left(F^{2}\right)=0.097$
$S=1.13$
3381 reflections
199 parameters

Table 1
Hydrogen-bonding geometry $\left(\AA,^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 1^{\mathrm{i}}$	0.90	2.03	$2.901(4)$	161
$\mathrm{~N} 1-\mathrm{H} 1 B \cdots \mathrm{O} 2 W^{\text {ji }}$	0.90	2.38	$3.194(5)$	150
$\mathrm{~N} 2-\mathrm{H} 2 B \cdots \mathrm{O} 2^{\mathrm{iii}}$	0.90	2.48	$3.261(5)$	144
$\mathrm{O}_{1} W-\mathrm{H} 1 W B \cdots \mathrm{O}^{\text {iv }}$	0.85	2.11	$2.955(5)$	175
$\mathrm{O}^{2} W-\mathrm{H} 2 W B \cdots \mathrm{O} 1^{v}$	0.84	1.97	$2.798(4)$	172
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 1 W$	0.90	2.11	$2.977(5)$	162
$\mathrm{O} 1 W-\mathrm{H} 1 W A \cdots \mathrm{O} 2$	0.84	2.04	$2.876(4)$	172
$\mathrm{O} 2 W-\mathrm{H} 2 W A \cdots \mathrm{O} 2$	0.86	2.24	$3.091(4)$	171

Symmetry codes: (i) $\frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}+z$; (ii) $x-\frac{1}{2}, \frac{1}{2}-y, \frac{1}{2}+z$; (iii) $1-x, 1-y, 2-z$; (iv) $-x, 1-y, 2-z ;(\mathrm{v})-x, 1-y, 1-z$.

Data collection: SMART (Siemens, 1996); cell refinement: SMART; data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

The authors thank the Education Office of Anhui Province, People's Republic of China (grant No. 2004kj300zd), and the Natural Science Foundation of Hubei Province, People's Republic of China (grant No. 2003ABB010).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: NA1655). Services for accessing these data are described at the back of the journal.

References

Graham, S., Daniel, E. L. \& Colin, H. L. K. (1996). Inorg. Chem. 35, 27112712.

Kristiansson, O. (2001). Inorg. Chem. 40, 5058-5059.
Nardelli, M. (1999). J. Appl. Cryst. 32, 563-571.
Nomiya, K., Takahashi, S., Noguchi, R., Nemoto, S., Takayama, T. \& Oda, M. (2000). Inorg. Chem. 39, 3301-3311.

Pingrong, W., Thomas, C. W. M. \& David, A. A. (1998). Inorg. Chem. 37, 26052607.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Usman, A., Fun, H.-K., Chantrapromma, S., Zhu, H.-L. \& Wang, X.-J. (2003). Acta Cryst. C59, m97-m99.
You, Z.-L., Yang, L., Zou, Y., Zeng, W.-J., Liu, W.-S. \& Zhu, H.-L. (2004). Acta Cryst. C60, m117-m118.
Zheng, S.-L., Tong, M.-L., Zhu, H.-L. \& Chen, X.-M. (2001). New J. Chem. 25, 1425-1429.
Zheng, S.-L., Tong, M.-L., Zhu, H.-L., Fang, Y. \& Chen, X.-M. (2001). J. Chem. Soc. Dalton Trans. pp. 2049-2053.
Zhu, H.-L., Liu, X.-Y., Wang, X.-J., Yang, F., Usman, A. \& Fun, H.-K. (2003). Z. Anorg. Allg. Chem. 629, 1986-1990.

Zhu, H.-L., Tong, Y.-X. \& Chen, X.-M. (2000). J. Chem. Soc. Dalton Trans. pp. 4182-4186.
Zhu, H.-L., Tong, Y.-X., Long, L.-S., Tong, M.-L. \& Chen, X.-M. (1999). Supramol. Chem. 11, 119-133.
Zhu, H.-L., Usman, A., Fun, H.-K. \& Wang, X.-J. (2003). Acta Cryst. C59, m218-m220.
Zhu, H.-L., Wang, Z.-G., Lin, Y.-S., Zou, Y., Tang, L.-L. \& Shao, S.-C. (2003). Acta Cryst. E59, m942-m943.
Zhu, H.-L., Zhang, X.-M., Liu, G.-F. \& Wang, D.-Q. (2003). Z. Anorg. Allg. Chem. 629, 1059-1062.

